Autonomous health monitoring of transportation infrastructure using unmanned aerial vehicle (UAV)
Client: Halil Ceylan
Advisor: Halil Ceylan, Shuo Yang

Isaac Bries
Kevin Yen
Quade Spellman
Rishab Sharma
Molly Hayes
Nathan Conroy
Project Plan
Problem Statement

- Cost-effective health monitoring

- Safety of:
 - Bridges
 - Construction work
 - Roads
Solution

- UAV
- Collecting Data
- Evaluate health of infrastructure
Functional Requirements

- Live feed and on board storage
 - Thermal camera
 - HD Camera
- 45+ min flight time
- Fly in 30 mph winds, light rain
- Line of sight flight
- Scan bridges, roads, and windmills
Non-Functional Requirements

- Easy to use
 - Clear documentation
- Cost effective
 - Limited budget
- Reliable
- Easy to maintain
- Drone pilot license
Other Constraints and Considerations

- Lots of research needed
 - Parts are expensive
 - No prior UAV experience
 - No civil engineering knowledge
- Avoid crashing the drone
 - Parts are still expensive
 - Delivery time
- FCC and FAA regulations
Potential Risks and Mitigation

● Drone Failure
 ○ Mechanical failure
 ■ Hexacopter design, allowing for 2 motors to fail
 ○ Flight system hardware failure
 ■ Redundant sensors and speed controllers
 ○ Low power
 ■ Multiple battery monitors and warnings
 ○ Communication Failure
Potential Risks and Mitigation (cont.)

- Unfavorable flight conditions
 - Bridges
 - Rain
 - IP water and dust resistant rated components
 - Housing for electronics
 - High Wind
 - Large wing span of drone
 - Powerful motors
Market Survey

- **TerraHawk CW-30**
 - Hybrid Vertical take and fixed wing
 - Phoenix Lidar Systems
 - Lidar Only

- **Flir Aerial thermal imaging kits**
 - Flir Thermal cameras + DJI drone systems

- **InfraDrone**
 - Iowa State Startup
 - 3D mapping and analysis
Resource/Cost Estimate

System Costs

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Flight System</td>
<td>$4,981</td>
</tr>
<tr>
<td>Imaging System (Projected)</td>
<td>$5,598</td>
</tr>
<tr>
<td>Total Cost</td>
<td>$10,579</td>
</tr>
</tbody>
</table>

Resource Costs

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Weight</td>
<td>8.8 kg / 19.3 lb</td>
</tr>
<tr>
<td>Thrust (60% Throttle)</td>
<td>35.4 kg / 78.0 lb</td>
</tr>
<tr>
<td>Battery Life (60% Throttle)</td>
<td>30-40 minutes</td>
</tr>
</tbody>
</table>
Project Milestone

● What we’ve done
 ○ Increased knowledge base
 ○ Experienced setbacks
 ○ Created a solid design

● Schedule of tasks for this semester
 ○ Order parts by November
 ○ Drone flight by end of semester
System Design

Imaging System
Hardware Flight System
Software Flight System
Imaging System

Original Plan:
- **GoPro Hero 4 or 5**
 - 4K video
 - Lots of available gimbals
 - Little to no zoom
- **Flir Vue**
 - Discontinued
- **Velodyne LiDAR Puck**
 - Not precise enough
 - $8,000 (cheapest we found)

Current Plan:
- **DJI Zenmuse Z3**
 - 7x zoom
 - Designed for industrial applications
 - Haven’t gotten approval yet
- **Flir Vue Pro R**
- **No LiDAR**
 - For now
Video Transmission

- **Frequency**
 - 5GHz
 - Signal offers better data rate
- **Range**
 - Maximum range is line of sight
- **Interference**
 - Radio
 - Other devices on the drone
- **3 Channel Switch**
 - Allows switching between 3 cameras using 1 output
Hardware Flight System

- **Frame decision**
 - Very limited market for drone frame
 - Wind resistance
 - Storage Space

- **Motor & Propellers**
 - Allows heavy loads
 - Power efficient

- **Electronic Speed Controller**
 - Need to regulate motor speed
Hardware Flight System (cont.)

- Remote Controller
 - Status Bar
 - Easily programmable
 - Sufficient Channels

- Battery
 - Power output
 - Duration
 - Weight
Software Flight System

- **ArduPilot**
 - Open source
 - Autonomous flight capabilities
 - Mission Planning
 - Real time operating system

- **Ground Station**
 - Many options thanks to MavLink protocol
 - Windows, OS X, Linux, iOS and Android options
 - Mission Planning
 - Drone flight and camera control
 - Open source options
Test Plan

- Flight Simulations
 - ArduPilot
 - SITL Simulation
- Data Transfer
 - Video Transmission
 - Data Storage
- Battery Life/Flight Time
 - Field Tests
Prototype

● Fixed Wing vs hexacopter
 ○ Stability
 ○ Ease of build and operation

● Methods to store image data

● Streaming video devices
 ○ Laptop vs tablet

● Orientation of sensors
 ○ Where and how are they being put onto the drone (via frame, gimbal etc.)
Prototype (cont.)

● Hexcopter
 ○ Stability benefit
 ○ Ease of build and operation

● Data stream implementation
 ○ All current imaging devices have onboard storage.

● Stream video on tablet
 ○ Portability

● 3D print own gimbal
 ○ More customizability
Current Project Status

● In Progress
 ○ Camera model choice
 ○ Simulation Ardupilot
 ○ FAA Certification
 ■ Schedule
 ■ Practice test
 ○ Motor, esc, propellers - waiting on parts
 ○ Testing individual parts working condition.
 ○ Gimbal design

● Completed
 ○ Researched and ordered flight related hardware
 ○ Assembled drone frame
Task Responsibility of Each Project Member

- **Nathan Conroy** - *Software Lead*: software library selection, flight hardware research
- **Kevin Yen** - *Hardware lead*: gimbal design, frame and signal transmission research
- **Quade Spellman** - *Meeting facilitator*: thermal research, helped with video transmission research
- **Rishab Sharma** - *Report Manager*, camera, battery research
- **Molly Hayes** - *Meeting Scribe*: camera and gimbal research
- **Isaac Bries** - *Test Engineer*: purchase proposal, test environment design
Plan for Next Semester

- Purchase all parts; HD Camera, Thermal, etc.
- Assign Software and Hardware jobs
- Finish building the drone; calibration, storing data, etc.
- Documentation - user manual
- Test, Test, Test!
- Have solution finished by mid-April
Questions?
Ground Station Data Schematic

1. 5.8 GHz Analog Video Receiver
2. Analog to digital video converter
3. Laptop/Tablet
 - Video Feed
 - Autonomous Flight Planning
 - Heads Up display
4. 3DR Radio (Telemetry transmitter and receiver)
5. FrSky Transis QX7 (Radio Transmitter)
6. Pilot